Bài tập tìm giao điểm đường thẳng và mặt phẳng

Bài tập tìm giao điểm đường thẳng và mặt phẳng

Bài 1. Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm cùa AC và BC. Trên đoạn BD lấy điểm P sao cho BP = 2PD.

a. Tìm giao điểm cuả đường thẳng CD và mặt phẳng (MNP)

b. Tìm giao tuyến của hai mặt phẳng (MNP ) và (ACD)

Bài 2. Cho hình chóp S.ABCD. Gọi M là một điểm trên cạnh SC.

a. Tìm giao điểm của AM và (SBD)

b. Lấy một điểm N trên cạnh BC. Tìm giao điểm của SD và (AMN)

c. Ta chọn (SBD) chứa SD và ta đi tìm giao tuyến của mặt phẳng (SBD) và (AMN).

Bài 3. Cho  hình chóp S.ABCD có đáy ABCD là hình bình hành. Trong mặt phẳng (ABCD) vẽ đường thẳng đi qua A không song song với các cạnh của hình bình hành và cắt đoạn BC tại E. Gọi C’ là một điểm nằm trên cạnh SC.

a. Tìm giao điểm M của CD và mặt phẳng ( C’AE )

b. Tìm giao tuyến của mặt phẳng (C’AE) với mặt phẳng (SAD).

Bài 4. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh SC.

a. Tìm giao điểm I của đoạn thẳng AM và (SBD). CMR: IA = 2IM

b. Tìm giao điểm P của đường thẳng SD và (ABM)

c. Gọi N là một điểm tùy ý trên cạnh AB. Tìm giao điểm của đường thẳng MN và với (SBD)

Bài 5. Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Trong mặt phẳng (ABCD) vẽ đường thẳng d đi qua A và không song song với các cạnh của hình bình hành, d cắt BC tại E. Gọi C’ là một điểm nằm trên cạnh SC.

a. Tìm giao điểm M của CD và mp(C’AE).

b. Tìm thiết diện của hình chóp cắt bởi mặt phẳng (C’AE).

BÀI TẬP ĐỀ NGHỊ

Bài 1. Cho hình chóp S.ABCD. Gọi M là một điểm trên cạnh SC.

a. Tìm giao điểm của AM và mp(SBD)

b. Lấy một điểm N trên cạnh BC. Tìm giao điểm của SD và mp(AMN).

Hướng dẫn

a. Ta chọn mp(SAC) chứa AM, tìm giao tuyến của mp(SAC) và mp(SBD).

Gọi O = AC ∩ BD

Ta có: SO=mp(SAC) ∩ mp(SBD)

Giao tuyến SO cắt AM tại I

Do đó: I (SBD)

ÞI = AM ∩ mp(SBD).

b. Ta chọn mp(SBD) chứa SD, tìm giao tuyến của mp(SBD) và mp(AMN).

Gọi H = AN ∩ BD

Ta có: HI là giao tuyến của hai mp(AMN) và mp(SBD)

Trong mp(SBD) giao tuyến HI cắt SD tại K

Vậy K = SD ∩ mp(AMN).

Bài 2. Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của cạnh SC.

a. Tìm giao điểm I của đường thẳng AM với mp(SBD). Chứng minh rằng IA = 2IM.

b. Tìm giao điểm P của đường thẳng SD với mp(ABM).

c. Gọi N là một điểm tùy ý trên cạnh AB. Tìm giao điểm của đường thẳng MN với mp(SBD).

Hướng dẫn

a. Ta có: I =AM ∩ SO nên I = AM ∩ mp(SBD)

AM và SO là hai đường trung tuyến của tam giác SAC

Nên I là trọng tâm tam giác SAC

Þ  AI = 2IM

b. Mp(SBD) chứa SD cắt mp(ABM) theo giáo tuyến BI vì B và I đều là các điểm chung của hai mp đó.

Trong mp(SBD) đường thẳng SD cắt BI tại P.

Do đó: P = SD ∩ mp(ABM).

c. Mp(SCN) chứa MN cắt mp(SBD) theo giao tuyến SH, trong đó H = NC ∩ BD

Trong mp(SCN) đường thẳng MN cắt SH tại K

Do đó: K =MN ∩ mp(SBD).

Bài 3. Cho tứ diện ABCD. M, N là hai điểm lần lượt trên AC và AD. O là một điểm bên trong

DBCD. Tìm giao điểm của:

a. MN và (ABO).                                          b. AO và (BMN).

Hướng dẫn:

a. Tìm giao tuyến của (ABO) và (ACD).

b. Tìm giao tuyến của (BMN) và (ABO).

Bài 4. Cho hình chóp S.ABCD, có đáy là hình thang, cạnh đáy lớn AB. Gọi I, J, K là ba điểm

lần lượt trên SA, AB, BC.

a. Tìm giao điểm của IK với (SBD).

b. Tìm các giao điểm của mặt phẳng (IJK) với SD và SC.

Hướng dẫn:

a. Tìm giao tuyến của (SBD) với (IJK).

b. Tìm giao tuyến của (IJK) với (SBD và (SCD).

Để lại một bình luận

Hãy trở thành người đầu tiên bình luận!

avatar
wpDiscuz
Bài liên quan
no img nhan thanh
Thiết diện của khối đa diện
Thiết diện và phương pháp tìm thiết diệnThiết diện: là một đa giác được tạo bởi giao điểm của mặt phẳng (P) với tất cả các cạnh ( đoạn thẳng ) của hình chóp và mặt phẳng (P). Phương pháp tìm ...
Chuyên mụcĐại cương về đường thẳng và mặt phẳng
no img nhan thanh
Tìm giao tuyến 2 mặt phẳng ( Hình học 11)
GIAO TUYẾN 2 MẶT PHẲNG TRONG HÌNH CHÓP CÓ ĐÁY LÀ TỨ GIÁCPhương pháp tìm giao tuyến: Tìm giao tuyến của hai mặt phẳng là tìm hai điểm chung của hai mặt phẳng. Để tìm điểm chung của hai mặt ...
Chuyên mụcĐại cương về đường thẳng và mặt phẳng
no img nhan thanh
Các tính chất thừa nhận trong hình học không gian
Bài 1: Các tính chất thừa nhận trong hình học không gianT/C 1: Có một và chỉ một đường thẳng đi qua hai điểm phân biệtT/C 2: Có một và chỉ một mặt phẳng đi qua ba điểm không thẳng ...
Chuyên mụcĐại cương về đường thẳng và mặt phẳng
no img nhan thanh
Đường thẳng và mặt phẳng trong không gian
VĐ1. ĐƯỜNG THẰNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN 1. Các tính chất thừa nhận T/C 1: Có một và chỉ một đường thẳng đi qua hai điểm phân biệt T/C 2: Có một và chỉ một mặt phẳng đi ...
Chuyên mụcĐại cương về đường thẳng và mặt phẳng
Xác định thiết diện của hình chóp với một mặt phẳng
Xác định thiết diện của hình chóp với một mặt phẳng
Xác định thiết diện của hình chóp với một mặt phẳngĐây là bài toán khó và phức tạp, dài. Cho nên phần này thầy sẽ trình bày chi tiết. Các bạn muốn xác định thiết diện phải làm theo các ...
Chuyên mụcĐại cương về đường thẳng và mặt phẳng
Sách và tư liệu
Tuyển tập câu hỏi lý thuyết_Sóng điện từ_ND 3_Đáp án
Tuyển tập câu hỏi lý thuyết_Sóng điện từ_ND 3_Đáp án
Để được giải đáp những vấn đề mình thắc mắc các bạn vào group: Học Vật lý cùng Nhân Thành ...
Chương trình Vật lý Nâng cao lớp 10 – Giáo trình tại NhanthanhGroup
Chương trình Vật lý Nâng cao lớp 10 –  Giáo trình tại NhanthanhGroup
Để được giải đáp những vấn đề mình thắc mắc các bạn vào group: Học Vật lý cùng Nhân Thành ...
Đề thi thử lần 1_Lớp 12_15/3/2017_Có đáp án.
Đề thi thử lần 1_Lớp 12_15/3/2017_Có đáp án.
Chúc các em bước vào giai đoạn ôn luyện hiệu quả!
Vật lý 10_CHỦ ĐỀ I: CHẤT RẮN KẾT TINH VÀ CHẤT RẮN VÔ ĐỊNH HÌNH
Vật lý 10_CHỦ ĐỀ I: CHẤT RẮN KẾT TINH VÀ CHẤT RẮN VÔ ĐỊNH HÌNH
A. LÝ THUYẾT1. Cấu trúc tinh thể.+ Cấu trúc tinh thể là cấu trúc tạo bởi các hạt liên kết ...